

Desktop Video Expert Center

PROJECT OVERVIEW & STATE OF AVAILABLE SOLUTIONS

Steve N. Kyramarios Lead, Desktop Video Expert Center

September 23, 1997

skyramarios@mail.arc.nasa.gov (415) 604-4950

Desktop Video Expert Center

Project Objectives

- •To establish standards for the Agency to ensure interoperability, scalability and efficient migration paths
- To perform advanced applications research and development in desktop video technologies such as compression algorithms, effects related to human factors, and connectivity/distribution of video related applications

Desktop Video Expert Center

Question: Why Desktop Conferencing?

Answer: Improved Communication through

- Audio/Video Collaboration
 Key verbal and non-verbal communications such as body language and facial expressions
- Data Collaboration
 Shared file capabilities such as ftp, simultaneous file manipulation, and whiteboarding
- Immediate Remote Communications
- •Improved Communications by Reducing Miscommunication
- Travel Reduction (productivity and cost gains)

Desktop Video Expert Center

Question: Great Benefits. Can I have it now?

Answer: There are Several Issues to Address

Interoperability

Must have standards to ensure interoperability and wide adoption as in the telephone and fax machine.

Transport

Applications must support various transports such as ISDN, LANs, and POTS.

Bandwidth

Mutual effort for data pipes to support quality and population requirements and compression technology to provide low bit-rate solutions.

Desktop Video Expert Center

Question: How Does the DVEC Benefit NASA?

Answer: By Providing a Protocol for DV Deployment.

Standards Compliancy

Research applicable standards to ensure long term product life-spans and various application interoperability.

- Testbedding
 Standards and product testing to ensure manufacture operation and compliancy claims.
- Advanced Research & Development
 Study next generation applications for future deployment into existing and next generation networks.

Desktop Video Expert Center

Overview of Requirements

Agency Specific

- Cross platform i.e. MacIntosh, PC and UNIX
- Scaleable i.e. LAN, WAN, MAN, dial-in, circuit switched, et.
- Full interoperability between desktop video equipment

Quality (User Specific)

- Phone quality audio and television quality video
- Local PC quality data exchange

Performance (User Specific)

- ~15 fps video
- echo cancellation
- immediate data collaboration update

Desktop Video Expert Center

Current Contributions

Standards Proposal Document (v2.0)

ITU-T Video Related Standards

- H.320: targets ISDN communications
- H.323: targets Internet Protocol (IP) communications
- H.324: targets POTS communications

Products recommended for Agency use (based on standards compliancy and interoperability)

- Nine H.320 products
- Two H.323 products
- Zero H.324 products

Desktop Video Expert Center

Current Contributions

Research and Development

Compression Technology

- Comparison between DCT, Wavelet and Fractal based compression algorithms
- To date findings show that the majority of Wavelet based algorithm outperform the popular DCT algorithm
- Ported DCTune(JPEG helper application) to ANSI C to aid speed, distribution and licensing

Networking

- Multicasting via the Mbone i.e. NASA TV and STS Missions
- Research of MPOA and it's benefits in transparent integration of native ATM and IP
- MPEG1 & MPEG2 over ATM

Desktop Video Expert Center

Available Solutions

H.320 (ISDN) Based Solutions

System Groups

• Group Systems (ex. PictureTel Venue and Concorde Systems)

Large to medium conferences

Typical bandwidth of 384Kbps

Price range: \$15K - \$35K

Small Group System (ex. PictureTel Swiftsite)

Portable (light weight and effortless configuration)

Typical bandwidth of 128Kbps

Price range: ~\$7K

Desktop Video Expert Center

Available Solutions

H.320 (ISDN) Based Solutions

- Desktop System (ex. Intel ProShare, Sagem Meet-Me, ect.)
 Integrates with desktop computer
 Typical bandwidth of 128Kbps
 Price range: \$1K \$4K
- Common Attributes
 Interoperable with any H.320 based system
 Defaults to lowest connected bandwidth
 Compatible with H.320 MCUs
 Commonly implemented over Switched-56

Desktop Video Expert Center

Available Solutions

Circuit-Switched Solution (ITU-T H.320)

Advantages

- Dedicated bandwidth for duration of connection
- Predictable data delivery i.e. performance
- MCUs are available from a variety of vendors (purchase/lease)
- Products tested and available for all platforms (Mac, PC, Unix)

Disadvantages

- Bandwidth is wasted during periods of little or no data transfer
- Deviates from consolidation philosophy i.e. requires a unique and dedicated circuit
- High costs

Desktop Video Expert Center

Available Solutions

H.323 (IP) Based Solutions

Desktop Systems (overview of test results)

- PictureTel LiveLan v3.0
 30fps at QCIF(176 x 144), 15fps at CIF(352x288)
 Scalable bandwidth (64kbps, 174kbps, and 384kbps)
 T.120 data collaboration
 Phone quality audio
- Microsoft NetMeeting v2.0
 Standards based freeware
 Inconsistent data rates with no built-in metrics
 Unresolved audio issues (no product support)
 T.120 data collaboration
 Performance greatly depends of main processor

Desktop Video Expert Center

Available Solutions

Packet-Switched Solution (ITU-T H.323)

Advantages

- Transparent multipoint conferences via IP multicasting
- Efficient utilization of bandwidth
- Supports Agency consolidation philosophy
- Transparent and wide-scale connectivity
- Little or no connection costs
- Potential in RTP and RSVP protocols in support of QoS
- Impressive results of real-time application tests via NREN/NGI

Disadvantages

• Unpredictable data delivery with existing operational IP networks (is being addressed in next generation networking)

Desktop Video Expert Center

Future Work

Standards

- Continue standard based video research along with product compliancy and interoperability testing
- Continue working with Agency Communication Teams to ensure proper Desktop Video representation

Research and Development

- Compare fractal based algorithms to DCT and wavelet
- Migrate DCTune to Motion JPEG
- Integrating PIM into ARCLAN to support wide-scale Multicasting
- Evaluate DV application performance over NREN/NGI

